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The solution of the following problem ilr given, 

1. Identical semi-infinite beams with stiffness pi make contact with both faces of 
a wedge (0 f r < M, - cc d 9 d a) . The loads applied normally to beams g1 (r) and 
qa (r) can be distinct. The ends of the beams which coincide with the edges of the wedge 
are interrelated differently, The problem is solved by partitioning into a symmetric (la) 
and ~~~e~c (1 b) problems. Problem 1 a can be treated as a problem on the ben- 
ding of a beam lying on a wedge (0 Q T < ~0, 0 < 6 < a), whose second face is under 
sliding support conditions. 

2. A semi-infinite, normally loaded beam is impressed in one of the faces of a wedge 
(0 f r < oo, 0 < 8 d a) while the other face is either free (Problem Za) or rigidly fixed 

(Problem Zb). 

3. Both sides of a semi-infinlte normally loaded beam make contact with wedges 
(O<~<W -Bd0<0)and (O,(r< 00, 0 < 0 < a), whose materials can be differ- 
ent. 

The exact solution of the problems listed is obtained by the method stated in [l. This 
method is perfected and simplified here, which ~rmi~~bst~tially toexpand the range of 
problems solved as compared with Cl] where only some particular cases of Problem 2a 
were considered. on the basis of the exact solutions obtained, the nature of the singularity 
in the contact stress be near the point of the wedge is investigated for all the problems 
listed and for the whole range of the angle a. It is found that Problem lb is not correct 
for angles a >, ‘is It. 

The ~v~gati~ is carried out without taking accamt of the shear contact stress, 
without taking account of the phenomenon of beam separation from the wedge, and for 
the case of plane strain in the wedge. 

1, Problem 1. In the symmetric case (Problem 1 a), both beams are loaded by 
the compressive load 1/S Ipl (r) -4- qB @)I, while in the anti-symmetric case (Problem 
lb) one beam (0 = cz) is loaded by the compressive load “/a [qi (r) - 4% (r)] and the 
other (0 = -a) is loaded by the same load but with a separating effect. For simplifi- 
cation of the notation, Q (r) will denote the load on the beam everywhere below. 

Assuming the contact stresses positive, we obtain the boundary conditions of Problem 
la as 

(1.1) 

The boundary conditions of Problem lb differ from (1.1) only in that a minus is re- 
tained in front of q (r),also for 8 = ---a. 

still another condition on the connection of the beam ends to the point of the wedge 
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must be added to conditions (1.1). Three kinds of connections are possible: a rigid con- 
nection, a hinge connection and a &ee edge. The e~~b~urn conditions of the system 
of two semi-infinite beams show that we can limit ourselves to the examination of the 
first two connections in the case of Problem 1 a sink a hinge connection is equivalent 
to free edges, In the case of Problem lb all three methods of connecting the beam ends 
are equivalent to the following equilibrium conditions for one of the beams: 

These conditions should be used in Problem 1 a also for the case of hinged connection 
of the beams. In the rigid connection case, condition (1.2) must be replaced for k = 1 

by the following: 
iwar (r, a) = 0, r=O (l-3) 

Let us proceed to construct the solution of Problem la. Proceeding exactly as in [lJ, 
taking account of the symmetry of the problem and realizing the boundary conditions 
(1.1). we arrive at the relationship 

Here the contour of integration Sz is the line Re p = C, where. co < c ( 0, and the 

meaning of the symbols G, X, s @) and co is the same as in [lj, 
According to the scheme presented in this paper, the relationship obtained should be 

reduced to a Carleman problem for. a strip. Tbis reduction can be accomplished by two 
methods: either by shifting the contour of integration to the left in the first integral of 
(l.4), as has been done in [I], or by shifting the contour of integration to the right in the 
second integral. Since the methods mentioned are not equivalent in the sense of the con- 
straints imposed on the f&n&ion q (t), it is expedient to elucidate both. 

Let us start with the second method. We use the notation 

@1 (P) = T (P) F (~1, QI (P) = 7 4 (I”) rp+s dr (1.5) 
0 

and we assume that the function (I+ (p) is analytic in the strip II0 (the notation {c + 
3m<Rep<c+3(m+i))=R,, m=O,fl,fZ,... isusedhereand 
below) and is continuous in the closed strip IIo. Moreover, uniformly relative to c < 
a\<63 

5 jur& + it)lVt <const (L6) 
-m 

As will be shown, the function (I.+ (p) constructed below actually possesses the properties 
listed under the condition that ++z (r) E Ls (0, m) wile or (p) E Ho, i.e. 
satisfies the Holder condition locally on the line 62. 

These properties of the function @r (p) permit shifting the contour of integration by 
tbree to the right in the right integral of (1.4) by using the Cauchy theorem, which re- 
sults in a Carleman boundary value problem for a strip. 
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~~-l(~o) ii (~o+~)~l(~o) =@1(po+3)+ -gQ,(p,t, po%cQ n=1 
(1.7) 

To realize the second method, we nse the notation 

@*(P)= ii. (P+n)F(P), Q@)=j&)rP& (1.3) 
?I+ 0 

and assume that the function cfr, @) poauesses the same properties in the strip II_, as 
does the function CD, (p) in IL,. We show below that it actually possesses these pro- 
perties under the condition that r%+k+c 4s) (r) E Ls (0, OO), k = 0, 1, 2, 3, 
whileQ@)E&* 

Shifting the contour of integration by three to the left in the left integral of (1.4),we 
arrive at the Carleman problem 

ha>, @o - 3) = Ii (PO + n)‘lT (PO) a>, (PO) + + Q (po), po E 52 (1.9) 
n=i 

The exact solution of the problems (L7), (L 9) can be obtained, as in [l - 31, by re- 
ducing it {4] to a Riemann problem [5] for which the structure of the exact solution de- 
pends principally on the index. As is seen from [1 - 31, finding the index of the Riemann 
problem is difficult because the coefficient has a complex singularity at the ends of the 
contour. It shonld be noted that similar difficulties occur in solving Wiener-Hopf equa- 
tions of the first hind [S] reduced to the Riemann problem on the axis with a coefficient 
which also has a singularity. They are there surmamted by using partial factorization, 
We apply this idea to the Carleman problems (3.. 7), (L 9) by trying to convert them so 
that the coefficients would have no singularities and the increment of their arguments 
would be zero (a similar idea has been used earlier in [?I) . 

By using the function 

* Cp) = [h”* ‘r (p + 1) sin Ysnp]-%D, (p) 

the boundary condition (1.7) is rewritten as 

(1.10) 

K (PO)@ (PO) + @ (PO + 3) = fl old, po E i2 (1.11) 

K (P) = tg ‘bpT-l (P), H (P) = 91 (p)Eh”~+lr (p + 4).cos '/a npl-' 

Now the required function Q, (p) has simple poles at the points p1 = 0 and pa = 2 
in the strip II,, , but the coefficient of the problem K (p) is c~ti~~s on each line $2 
lyinginthestripy<Rep<O(y=max{--1, ~-R/CL)), hasnozeros,pos- 
sesses the asymptotics K (p) = 1 + 0 (e-*@lpi), 1 p 1 + 00 (f! = min {a, Vzn}), 
satisfies the Holder condition, and finally larg K @)I0 = 0. All the properties listed 
are verified sufficiently simply with the exception of the last one. To prove it, we use 
UleasymptottcsT@) = k i, Imp 
Iarg T @)]a = 

- f 00, which permits finding that A = 
fHc, where n is an integer, odd, and independent of cc. Setting a = 

‘/sn in the expression for T (p) , we find by analogy with [I] (see Sect. 4) that A = 
--n from which follows what is required. 

Using the function 
m(w) = &Q) ( 

3i In (- w) 
.& 
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we paos from the Carleman problem (1.11) to the Riemann problem [l, 43 

K, @)a+ (u) = o- (u) + h (u), u<o (1.12) 

Kl(u)=K(3i1np+C), h(u)= &ff(3ily~+c) 

The properties noted for the functions CD (p), K (p) and Q1 (p) permit obtaining the 
solution of problem (1.12) by the scheme presented in [S] . Then, retnming from o (ID) 
to the function CD @), we obtain formulas yielding the solution of the Carleman prob- 
lem (1.11) 

W)=W)[&~ 
H (s) ds 

X (s + 3) sin l/8 x (p - s) + 

sin I/af;p - 2) 1 
r4 P 

x (p) = exp .+ 
i I [&n-P) -11-‘InK(s)ds}, pErI 

n 

Here C1 and Cs are arbitrary constants. 
Let Us examine the properties of the constructed function Q, (p). Analyzing (1.13) , 

we note that for any integer m the function Q, (p) is analytic in each strip n,, with 
the exception of the points p1 =3mandpr=3mf2,wheretherearesimple 
poles, and it has a jump on each line {Re p = c + 3m) = 51, ,where its limit va- 
lues to the left (a_ @)) and right (a+ (p)) on this line are connected by the relation- 

ship 
O_(P) = K @ - 3&D+ @) - (--l)rn H @ - 3m), p EQ62, (1.14) 

a+ (PI = x+ 04 [$ x;($ 3) + & j x (s + 3;i(n’!;n (p _ 8) + 

Cl 

sin l/8 alp + <inl/8rrC;p - 211 

X, (P) = w { - + ]n K (p) + + \ [8/l nWP) - 11-l In K (S) dS}, p@ 

a 

Taking into account that the functions K (p) and H @) E Ho, it can be shown [l] 
that @ (p) is continuous in each closed strip &,, with the exception of the points p1 
and ps, and therefore, the function U$ (p) is continuats and analytic in the closedstrip 

110 

There remains to show compliance with condition (1.6) for the constraint imposed 
above on the load, According to p], thts constraint is equivalent to the condition 
& (p) E J& (a). From (1.11) and the asymptotics for the gamma function known from 
[Fj, it follows that H 0) and ~‘/s+~H (p) E LB ($2). Using the Fourier transform (aRer 
the substitution s = c -I- iz, p = c f iz) and Theorem 68 from p], it can be shown 

that the integral & \ [X (s + 3) sin l/s n (p - s)]-l H (s) ds, p E no 
n 

Subsequent use of (L 10) and (1. X3) and the asymptottcs for the gamma function per- 
mits maldng the deduction that the function <ox (p) satisfies condition (1.6). 
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In the case of a hinged connection between the beams,the constants C1 and C, are 
determined by conditions (L 2), which it is c~y~i~t to use in the form 

W94+Qt?d=o, p=o, 1 

Here x (p, a) denotes the MeIlin transform of the contact stress ua (r, a). Noting that 

z (p, a) = a@, w,, Q (P) = Q l(P - 3) 
the conditions (I.. 15) are reaIized. ConsequentIy, we obtain equations to determine tbe~ 

=Onstants @ (1) + Q1 (-2)(2 3{%)-1 = 0, C, = -Q1 (-3)[3 X(0)1-l (1.16) 

In the case of a rigid connection between the beams, the realization of condition (1.3) 
is complex, In order to simplify it, we mu&ply the beam bending equation by 9 and 
integrate (by parta) from zero to infinity. This ~~o~ati~ results in the expression 

m 

5 [68 (r, a) + q (r)] r%r = 20 $ (r, a) Jr+ = 0 
0 

Therefore, condition (1.3) is equivalent to the relationship X (2, a) + Q (2) = 0. 
ReaIization of this latter and of condition (1.15) for p = 0 yields 

C, = -QI (-3)13X (O)F, C, = QI(-q[swx (2)1-l 

Thus, the exact solution of Problem la has been obtained. This permits writing aII the 
quantities of interest in quadratures. For example, the contact stress ue (r, a) has the 
form 

oa (r, a) = & 
s 

2h’hpr(p+ l)sin f np Q+ (p) r-p-%+ 
n 

(1.17) 

Here the function @+ (p) is defined by (1.14). 
Now, investigating the behavior of the stress (1.17) at the wedge apex and at infinity 

according to the scheme in [1], we find that the asymptottcs for r + 0 is valid in the 
case of hinge connected beams: ue = 0 (In r) for a \< liaz and oe = 0 fr+-a) 
for r/s it < oc < 3t, while aa = 0 (1) and ue = 0 (r+-s) , respectively, in the 
case of a rigid connection. As r --f (x, the contact stress ue decreases as r-s indepen- 
dently of the method of beam connection, S = min (4, e), where e entem into the 
asymptotics q (r) = 0 (P), r -+ 00. The remits obtained for a = 1/a S-C agree with 
the results in [lo). 

Applying the method of partial factorization to the problem (1.9), we arrive at the 
foIlowing problem : 

a)CPo-33)3-K@o)~ftCp,)=H(po), POESZ 
(1.18) 

d, (p) = [h’/*Pcos Vgcp I’ (p + 4)1-‘0, (p), K (p) = ctg Vn npT (p) 

H @) = -_[2h’ifl I’ @ + 1) sin l/lnpl-lQ @) 

We note that the function CD (p) has two simple poles p1 = -3 and pz = -2, in the 
strip n-i , the coefficient of the problem (1.18) poesew~ the same properties as the co- 
efficient of the problem (1.11) and the free term (under the constraint made above on 
the function q (r)) posseas the properties: H @) EHo, pll*+r+eH @) E Lz (Sz), 
k = 0, 1, 2, 3. The solution of the problem (1.18) is constructed by the same method 
as the problem (1.11) and has the form 
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The function X (p) is here determined by the second of forrnul$(L 13). 
Performing an analysis similar to the analysis of (1.13), we arrive at the deduction 

that the function 0s @) in the strip K, possesses all the properties assumed earlier. 
Interchanging the plus and minus subscripts of 0 @) in (1.14) yields a formula connec- 
ting the limit values of the function (I.. 19) on the line 51,. 

Let us present the expression for the contact stress us (r, a) 

6e(F,U) = -& s sin a (p - 1) sin a (p + 1) sclltnp (1.20) 
n 

In the case of a hinged connection between the beams, the constants C, and C’s arc de- 
termined by the formula 

ci= - E X(s-3)H(s)csc i i2r s ga (a - 1) ds, c, = 0 
n 

while in the case of a rigid connection C, = C, = 0. 
Investigation of the integral (I.. 20) shows that the stress asymptotics oe (r, a) agrees 

completely with the corresponding asymptotics of the stress (1.1’7) as r j 0 for both 
hinds of connections (just as for F + co). 

Thus, on the basis of the Carleman problems (1.7) and (1.9). two forms of the solution 
of problem la have been obtained. For a rigorais foundation of the. solution obtained 
on the basis of problem (1.9), it is hence required that flfik+cq(@ (r) E La (0, do), 
k = 0, 1, 2, 3, and on the basis of (1.7) that r’/*cq (r) E L, (0, cm). Therefore, 
the selection of the form of the solution of the contact problem should be linked up with 
a preliminary analysis of the properties of the function q (F). 

We obtain the solution of the remaining problems on the basis of the Carleman prob- 
lem of the form (1.7). Preference is given to this form of the solution because it includes 
the Case of a piea%Vise-ConstaI’it load q (F) which is of the greatest practical interest(it is 
pcssible to pass from this case over to the case of a concentrated force), 

Let us briefly examine Problem lb. Taking its anti-symmetry into account and rea- 
lizing the boundary conditions, we arrive at the Carleman problem (1. ‘7) for which the 
functions T (p) and @i @) are determined by the formulas 

T (p) .= lla[(p + 1) tg a @ - 1) - @ - 1) tg a @ + 111 (1.21) 

@i (p) = T @) p cos a @ + 1) B (P) 

It is easy to see that the function 

K (p) = tg l/s np T-l (p) (1.22) 

possesses the same properties in the strip y ( Rep < 0, y = max (-1, l--n/ 
2~4) as the coefficient of the problem (1.11). 

Using the function (1. lo), we pass from the problem ( 1.7)) (1.21) to the problem 
(1. ll), (1.21), (1.22), whose solution is determined by ( 1.13). Independently of the hind 
of connection of the beam ends, the constants C, and Cs are determined by (1.16). and 
the integral (1.17) yields an expression for the contact stress ue. Analyzing the beha- 
vior of the stress at the wedge apex, we find that for a < 1/a ar the quantity (~0 (r, a) 
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ten& to zero as r when r + 0 , as r In r for u, = IIt, n , as rxif@-2 for ‘Is x < 
a d r/* it and has a powetiaw ~~1~~ of the form rQ@-z for I/, n< a < ‘i2x . 
For a > l/s ax the singularity becomes noninte-grable, therefore, Problem lb is correct 
only for convex angles. The contact stress decreases at infinity exactly as in the previ- 
ous problem. 

2, Problem 2a. A beam lies freely on a face (0 = 0) of a wedge (0 \( r < 
00, 0 6 8 \( a < 2~). when the boundary conditions for the wedge and the equilib- 
rium conditions for the beam are 

m 

S [ae (r, 0) + q (r)] rkdr = 0, k = 0, i 
0 

Realization of the boundary conditions (2.1) results in the Carleman problem (I.. 7), in 
which we should set 

T (p) = 2(sin2ap - p2 sin2a)(sin 2ap + p sin 24-l t2- 2, 

@I cp) = T @I P 23 (P) 
and which mduces to the problem (l, 11) by means of (1.10). Evidently the function 

JY @) = l/s tg “lgcp (sin 2ap + p sin 2a)(sinaap - p2 sins@-1 (2.3) 

pogpeare~ all the necessary properties in the strip y ( Re p ( 0, where y =max{-i, 
cl}, and cl is the first negative root of the equation sin 2ap + p sin 2a = 0. wince 
theline Q isinthfsstrip,i,e. Y<Rep,<O,thenthesorutiolloftheproblem 
(1. U), (2.3) is given by (I. 13). As before, the constants c, and C2 are determined by 
(I.. 16). 

Particular cases of Problem 2a (a load in the form of concentrated forces P and a 
moment M applied to the end of the beam coincident with the point of the wedge, and 
a = V2n, n, ‘?$r) were examined in [l]. It is clear that consideration of this load case 
is carried out by the usual scheme. The function @ @) is hence determined from (l.13) 
in which is set 

H (p) E 0, Ca = Cl + VF M [47%- X (1)1-l, cl = - P [3X (0)1-l 

For any kind of load,( 1.17) yie.lds the expression for the contact stress G@ (r, CL) . An 
analysis of the behavior of this stress as r - 0 shows that for a < Vsn the quantity a, 
tendstozeroas p$“, p=max{l,-cz - f}, it is bounded for a = */,n but has a power 
~~la~~ of the form r4'+ for a > Vsx , The behavior of rr, as r --, w is the same 
as in Problem 1. These remIts agree with analogous resdts in [l, 111. 

Problem 2b. In this case the boundary conditions sre 

U, u = 0, 6 = a; Z,@ = 0, D g=os +q(r), i3=0 

One of the followfng ccndttions for fudng the end of the beam 

(2.4) 

OJ 

-$ (r, 0) = 0, r -ii 0; \ [oe (r, 0) + q (r)] rdr = 0 (2.5) 

should be added. 0 

The first condition characterizes rigid, and the second hinge fixing (the free edge 
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condition is equivalent to hinge fiig). 
The realization of conditions (2.4) results in a Carleman problem (1. ‘7) for which 

0, (P) = T (P) PB (P) (2. ‘9 

T (p) = l/,[4x sina ap + 4p2 sin% - (X + 1)*1(x sin 2ap -p sin 2a)-l 

Let ~a and c3 be the greatest real parta of the roots of the equations 4x sir?ap + 
4pa sinaa - (x + 1)a = 0 and x sin 2ap - p sin 2a = 0 in the left half-plane, 
respectively. Then the function T (p) iscontinuousintheatrip ~<Rep< 0, 

Y = max (-1, c,, ca),does not vanish, and has the aaymptotics T (p) = k i, 
Im p+ & 00. Moreover, Iarg T @)ln = n. Hence,the factor tan l/a np which 
improves the coefficient of problem (1. ‘7) does not appear, The factor - cot ‘/anp 
replaces it here. In fact, the function 

K (P) = -2 ctg’/,np (x sin 2ap - p sin 2a) [4x sina up + (2.7) 

4pa sinSa - (x + 1)*1-l 

possesses all the necessary properties in the strip y < Re p < 0, By using the func- 
tion (1. lo), in which the sin l/a np is replaced by cos l/a np, we go over from the prob- 
lem (1. ‘I), (2.6) to the problem (1.11),(2.7). Hence, cos ‘/a np in the expression for 
H @) should be replaced by -sin lllnp. Since the function 6 (p) now has only one 
pole, the point p = i in the strip II,, , then the first formula in (1.13) is changed and 
becomes 

The realization of conditions (2.5) yielda equations for the constant C 

C = Q,(-2)[3 7xX (1)1-l, 0 (2) = l/~-v &(-I) 

The Brat equation correaponds to the case of a free end of a beam, and the second one, 
to rigid fixing. 

The contact stress oe (r, 0) is determined by the integral (1.17) in which the sin’lanp 
must be replaced by cos l/a np. Analyzing this integral, we detect that independently 
of the method of fixtng the end of the beam, the quantity ae is bounded for a< l/a n 
aa r --f 0, has a logarithmic singularity for a = llan, and the singularity becomes a 
power in the form r-Q-1 for a >llan . 

Problem 3, Let the beam make contact on one of ita sides with the face 8 = 0 
ofawedgeA(O<r< oo,-~<0\<0),andontheotherwiththeface ~J=O 
ofawedge B(O<t< 00, 0 < Cl \< a). Let the superscript 1 mark all quanlitiea 
characterizing the stress state of the wedge A and the auperacript 2, of the wedge B. 
Then the boundary conditions and the condition of a free edge for the beam are written 
as &’ = z&o, 0=-p; &‘=r&O, 6=a (2.6) 

r$) = z$j = 0, r$l) = o(2), e=o 

D 
a+(2) w F = Qe -&‘+q(r), 8=0 

OD 

s [@ - c$’ + q(r)] rkdr = 0, k = 0,1, 0 = 0 
B 



1062 G.Ia.Popov and L.Ia.Tlkhonenko 

Realizing the boundary conditions written down, we arrive at the Carleman problem 
(1.7). Hence 

D 
T(P)=- 

C 

2G@) sin*ap - pzsin*a 2G(‘) sina f3p - pa sin2 fi 
@) + 1 sin 2ap + p sin 2a + #) + 1 sin 2pp + p sin 23 1 (2.9) 

' 
ml (p) = *’ (x(2) + I) 

D,'$*) 
T (p) pBW (p) 

We agume that the function T (P) haa no zeros in the strip y( Re p < 0, y = 
max (-1, cl(l), ci@J},where ~(1) and ct(2) are the greatest real parta of the roots 
of the equations sin 2#3p + p sin 2f3 = 0 and sin Zap + p sin 2a = 0 in the 
lefi half-plane, respectively. 

This is verified sufficiently simply for a = fi . Moreover, the following conaidera- 
tions might also be a confirmation. In the case of the presence of zeros for the function 
T (p) in the strip y ( Re p ( 0 it can be shown by relying on the principle of the 
argument that the solution of problem (1.7), (2.9) will contain a number of arbitrary 
constants, not equal to two, and this willre~llt either in a contradiction to the uniqueness 
of the solution of the mechanical problem being examined, or in the nonexistence of its 
solution. 

Taking this hypotheaia aa a baa&it is eaav to show that the function T (p) E Hn if 

ye Re pot 0 and that [ax T (p)ln = -ax. Then the function (1.10) reduces the 
problem (1. ‘7), (2.9) to the problem (1. ll), (2.9), whose solution is given by (1.13). The 
arbitrary constants C, and C, in the solution are determined by the equilibrium condi- 
tions (2.8) for the beam. It is easy to go from these conditions over to (1.16) which de- 
termine the constants C, and Ca, using the formulas 

FJ2) (P, 0) - Z1) (P, 0) + Q (P) = 0, p = 0,l 

2 PD, (PII, = B2’ (P, 0) - B1) (P, 0) 

The expressions for the contact stresses o&i) (r, 0) and o&z) (r, 0) are obtained from 
the integral (1.17) by multiplying the integrand, respectively, by the functions f(l) (p) 
and f(a) (p) of the form 

f(l) 0) = --DG(i) (sin2 fip - p2 sin2 p)[Zh (x(l) + 1) (sin 2bp + 
p sin 2g)T (p)l-’ 

f(2) (p) = DG@) (sin2 ap - p2 sin2a)i2h (Xc2) + l)(sin 2ap + 
p sin 2a)T (p)l-’ 

An analyaia of the behavior of the contact stresses aa r + 0 shows that for b, a < 
l12rc the streaaes o&L 2) (r, 0) have a zero of the order j.&o* 2, = max { 1, c’,‘* ‘) - I}, 
thee stresses are bounded for 6 = a = i/2 n and have a power singularity of theorder 
- ci(i, 2) - 1 for /3, a > 1/2 rr, , reqectively. 

The method by which the exact solution of hoblem 3 haa been obtained permits ob- 
taining exact aolutiona for a whole series of problems which differ from Problem 3 only 
by the boundary conditions on the faces 0 = - fl and 8 = a (including inhomoge- 
neous conditions). 
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Withiu the framework of the Cauchy problem, a class of models of a linearvis- 
coelastic body subjected to the stability principle of the natural unstressed state 
state ofviscoelastic bodies (Principle Y)ia isolated in Cl]. The principle Y is 
formulated as follows. Let the boundary conditions be such that the appropriate 
elasticity theory problem has a zero solution, If a viscoelaatic body is free of 
external loads at each instant f > 0 , then for every initial state, strain of the 
body vanishes as t --) 00. The principle Y is called partial if it is satisfiedonly 
for some particular class of viscoelasticity problems. 

Sufficient conditions for compliance with the partial Y principle are obtained 
in this paper for models of viscoeiastic bodies within the framework of the fun- 


